Strong algebrability of series and sequences

Szymon Głąb

with Artur Bartoszewicz (Technical University of Lodz)

Introduction

algebrability

Assume that B is a linear algebra, that is, a linear space being also an algebra. E is κ-algebrable if $E \cup\{0\}$ contains a κ-generated algebra, i.e.
$P\left(x_{1}, \ldots, x_{n}\right) \in E$ or $P\left(x_{1}, \ldots, x_{n}\right)=0$ for distinct generators x_{1}, \ldots, x_{n} and any polynomials P.

Introduction

algebrability
Assume that B is a linear algebra, that is, a linear space being also an algebra. E is κ-algebrable if $E \cup\{0\}$ contains a k-generated algebra, i.e.
$P\left(x_{1}, \ldots, x_{n}\right) \in E$ or $P\left(x_{1}, \ldots, x_{n}\right)=0$ for distinct generators x_{1}, \ldots, x_{n} and any polynomials P.

Introduction

algebrability

Assume that B is a linear algebra, that is, a linear space being also an algebra. E is κ-algebrable if $E \cup\{0\}$ contains a κ-generated algebra, i.e.
$P\left(x_{1}, \ldots, x_{n}\right) \in E$ or $P\left(x_{1}, \ldots, x_{n}\right)=0$ for distinct generators x_{1}, \ldots, x_{n} and any polynomials P.

Introduction

algebrability

Assume that B is a linear algebra, that is, a linear space being also an algebra. E is κ-algebrable if $E \cup\{0\}$ contains a κ-generated algebra, i.e.
$P\left(x_{1}, \ldots, x_{n}\right) \in E$ or $P\left(x_{1}, \ldots, x_{n}\right)=0$ for distinct generators x_{1}, \ldots, x_{n} and any polynomials P.

free linear algebras

A is a κ-generated free algebra, if there exists a subset $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ of A such that any function f from X to some algebra A^{\prime}, can be uniquely extended to a homomorphism from A into A^{\prime}.
generates a free sub-algebra A if and only if for each polynomial P

strong algebrability

A subset E of a commutative linear algebra B is strongly κ-algebrable, if there exists a κ-generated free algebra A cortained in $E \cup\{0\}$

free linear algebras

A is a κ-generated free algebra, if there exists a subset $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ of A such that any function f from X to some algebra A^{\prime}, can be uniquely extended to a homomorphism from A into A^{\prime}. A subset $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ of a commutative algebra B generates a free sub-algebra A if and only if for each polynomial P and any $x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots, x_{\alpha_{n}}$ we have $P\left(x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots, x_{\alpha_{n}}\right)=0$ if and only if $P=0$.

strong algebrability

A subset E of a commutative linear algebra B is strongly κ-algebrable, if there exists a κ-generated free algebra A contained in $E \cup\{0\}$

free linear algebras

A is a κ-generated free algebra, if there exists a subset $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ of A such that any function f from X to some algebra A^{\prime}, can be uniquely extended to a homomorphism from A into A^{\prime}. A subset $X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ of a commutative algebra B generates a free sub-algebra A if and only if for each polynomial P and any $x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots, x_{\alpha_{n}}$ we have $P\left(x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots, x_{\alpha_{n}}\right)=0$ if and only if $P=0$.

strong algebrability

A subset E of a commutative linear algebra B is strongly κ-algebrable, if there exists a κ-generated free algebra A contained in $E \cup\{0\}$.

Proposition

The set c_{00} is ω-algebrable in c_{0} but is not strongly 1 -algebrable.

Theorem
 The set $c_{0} \backslash \bigcup\{I P: p \geq 1\}$ is densely strongly c-algebrable in c_{0}

Theorem
The set of all sequences in 1^{∞} which set of limits points is homeomorphic to the Cantor set is comeager and strongly \mathfrak{c}-algebrable.

Proposition

The set c_{00} is ω-algebrable in c_{0} but is not strongly 1 -algebrable.

Theorem
 The set $c_{0} \backslash \bigcup\left\{I^{p}: p \geq 1\right\}$ is densely strongly \mathfrak{c}-algebrable in c_{0}.

> Theorem
> The set of all sequences in I^{∞} which set of limits points is
> homeomorphic to the Cantor set is comeager and strongly c-algebrable.

Proposition

The set c_{00} is ω-algebrable in c_{0} but is not strongly 1-algebrable.

Theorem

The set $c_{0} \backslash \bigcup\left\{I^{p}: p \geq 1\right\}$ is densely strongly \mathfrak{c}-algebrable in c_{0}.

Theorem

The set of all sequences in I^{∞} which set of limits points is homeomorphic to the Cantor set is comeager and strongly \mathfrak{c}-algebrable.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $\left.f\right|_{Z}$ is not a Borel map is called Sierpiński-Zygmund function.

with D. Pellegrino and J. B. Seoane-Sepúlveda

The set of Sierpiński-Zygmund functions is strongly κ-algebrable, provided there exists a family of κ almost disjoint subsets of c.

lemma

Let \mathcal{P} be a family of non-zero real polynomials with no constant
term and let X be a subset of \mathbb{R} both of cardinality less than c
Then there exists set $Y=\left\{y_{\xi}: \xi<\mathfrak{c}\right\}$ such that
$P\left(y_{\xi_{1}}, y_{\xi_{2}}, \ldots, y_{\xi_{n}}\right) \notin X$ for any n, any polynomial $F \in \mathcal{P}$ and any
distinct ordinals

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $\left.f\right|_{Z}$ is not a Borel map is called Sierpiński-Zygmund function.

with D. Pellegrino and J. B. Seoane-Sepúlveda

The set of Sierpiński-Zygmund functions is strongly κ-algebrable, provided there exists a family of κ almost disjoint subsets of \mathfrak{c}.

lemma

Let \mathcal{D} be a family of non-zero real polynomials with no constant term and let X be a subset of \mathbb{R} both of cardinality less than c Then there exists set $Y=\left\{y_{\xi}: \xi<\mathfrak{c}\right\}$ such that $P\left(y_{\xi_{1}}, y_{\xi_{n}}, \ldots, y_{\xi}\right) \notin X$ for any n, any polynomial $P \in \mathcal{P}$ and any distinct ordinals ε

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $\left.f\right|_{Z}$ is not a Borel map is called Sierpiński-Zygmund function.

with D. Pellegrino and J. B. Seoane-Sepúlveda

The set of Sierpiński-Zygmund functions is strongly κ-algebrable, provided there exists a family of κ almost disjoint subsets of \mathfrak{c}.

lemma

Let \mathcal{P} be a family of non-zero real polynomials with no constant term and let X be a subset of \mathbb{R} both of cardinality less than \mathfrak{c}.
Then there exists set $Y=\left\{y_{\xi}: \xi<\mathfrak{c}\right\}$ such that
$P\left(y_{\xi_{1}}, y_{\xi_{2}}, \ldots, y_{\xi_{n}}\right) \notin X$ for any n, any polynomial $P \in \mathcal{P}$ and any distinct ordinals $\xi_{i}<\mathfrak{c}$.

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term.

function

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and $\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of c each of

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and $\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. Let $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c .
enumeration of N_{ζ} and define f_{ζ}
a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c}. There is $\xi<\mathfrak{c}$ such that $N_{\zeta_{1}}, N_{\zeta_{2}}, \ldots, N_{\zeta}$ are disjoint above ξ. Since Z is of cardinality \mathfrak{c}, there is $\alpha<\mathfrak{c}$ with $\alpha>\max \{\beta, \gamma, \xi\}$ and $x_{\alpha} \in Z$. Since α is greater than ξ, then $f_{\zeta_{1}}\left(x_{\alpha}\right), f_{\zeta_{2}}\left(x_{\alpha}\right), \ldots, f_{\zeta_{n}}\left(x_{\alpha}\right)$ are distinct points of Y_{α}. Since α is greater than β and γ, by construction $P_{\beta}\left(f_{\zeta_{1}}, f_{\zeta_{2}}, \ldots, f_{\zeta_{n}}\right)$ differs from g_{γ} at the point $x_{\alpha} \in Z$. Therefore $P_{\beta}\left(f_{\zeta_{1}}, f_{\zeta_{2}}, \ldots, f_{\zeta_{n}}\right)$ is a Sierpiński-Zygmund function.

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and $\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. Let $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality \mathfrak{c}. For any $\zeta<\kappa$ let $\{\zeta(\xi): \xi<\mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{\zeta}\left(x_{\alpha}\right)=y_{\zeta(\alpha)}^{\alpha}$.

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and $\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. Let $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality \mathfrak{c}. For any $\zeta<\kappa$ let $\{\zeta(\xi): \xi<\mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{\zeta}\left(x_{\alpha}\right)=y_{\zeta(\alpha)}^{\alpha}$. Let $\zeta_{1}<\zeta_{2}<\ldots<\zeta_{n}<\kappa, P_{\beta}$ be a polynomial in n variables, g_{γ} be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c}.
is of cardinality \mathfrak{c}, there is $\alpha<\mathfrak{c}$ with $\alpha>\max \{\beta, \gamma, \xi\}$ and $x_{\alpha} \in Z$. Since α is greater than ξ, then $f_{\zeta_{1}}\left(x_{\alpha}\right), f_{\zeta_{2}}\left(x_{\alpha}\right), \ldots, f_{\zeta}$ construction $P_{\beta}\left(f_{\zeta_{1}}, f_{\zeta_{2}}, \ldots, f_{\zeta_{n}}\right)$ differs from g_{γ} at the point $x_{N} \in Z$. Therefore $\left.f_{\zeta}\right)$ is a Sierpiński-Zygmund function.

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and $\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. Let $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality \mathfrak{c}. For any $\zeta<\kappa$ let $\{\zeta(\xi): \xi<\mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{\zeta}\left(x_{\alpha}\right)=y_{\zeta(\alpha)}^{\alpha}$. Let $\zeta_{1}<\zeta_{2}<\ldots<\zeta_{n}<\kappa, P_{\beta}$ be a polynomial in n variables, g_{γ} be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c}. There is $\xi<\mathfrak{c}$ such that $N_{\zeta_{1}}, N_{\zeta_{2}}, \ldots, N_{\zeta_{n}}$ are disjoint above ξ.

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. Let $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality \mathfrak{c}. For any $\zeta<\kappa$ let $\{\zeta(\xi): \xi<\mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{\zeta}\left(x_{\alpha}\right)=y_{\zeta(\alpha)}^{\alpha}$. Let $\zeta_{1}<\zeta_{2}<\ldots<\zeta_{n}<\kappa, P_{\beta}$ be a polynomial in n variables, g_{γ} be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c}. There is $\xi<\mathfrak{c}$ such that $N_{\zeta_{1}}, N_{\zeta_{2}}, \ldots, N_{\zeta_{n}}$ are disjoint above ξ. Since Z is of cardinality \mathfrak{c}, there is $\alpha<\mathfrak{c}$ with $\alpha>\max \{\beta, \gamma, \xi\}$ and $x_{\alpha} \in Z$.
are distinct points of Y_{α}
Since α is greater than β and γ, by
construction $P_{\beta}\left(f_{C}, f_{C}, \ldots, f_{C}\right)$ differs from g at the noint
$x_{\alpha} \in Z$. Therefore $P_{\beta}\left(f_{\zeta_{1}}, f_{\zeta_{2}}, \ldots, f_{\zeta_{n}}\right)$ is a Sierpínski-Zygmund
function.

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. Let $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality \mathfrak{c}. For any $\zeta<\kappa$ let $\{\zeta(\xi): \xi<\mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{\zeta}\left(x_{\alpha}\right)=y_{\zeta(\alpha)}^{\alpha}$. Let $\zeta_{1}<\zeta_{2}<\ldots<\zeta_{n}<\kappa$, P_{β} be a polynomial in n variables, g_{γ} be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c}. There is $\xi<\mathfrak{c}$ such that $N_{\zeta_{1}}, N_{\zeta_{2}}, \ldots, N_{\zeta_{n}}$ are disjoint above ξ. Since Z is of cardinality \mathfrak{c}, there is $\alpha<\mathfrak{c}$ with $\alpha>\max \{\beta, \gamma, \xi\}$ and $x_{\alpha} \in Z$. Since α is greater than ξ, then $f_{\zeta_{1}}\left(x_{\alpha}\right), f_{\zeta_{2}}\left(x_{\alpha}\right), \ldots, f_{\zeta_{n}}\left(x_{\alpha}\right)$ are distinct points of Y_{α}.
construction $P_{\beta}\left(f_{C_{1}}, f_{C_{2}}, \ldots, f_{C_{0}}\right)$ differs from g_{γ} at the point
$x_{\alpha} \in Z$. Therefore $P_{\beta}\left(f_{\zeta_{1}}, f_{\zeta_{2}}, \ldots, f_{\zeta_{n}}\right)$ is a Sierpiński-Zygmund
function.

Proof. Enumerate Borel functions $\left\{g_{\alpha}: \alpha<\mathfrak{c}\right\}$ and
$\mathbb{R}=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X:=\left\{g_{\lambda}\left(x_{\alpha}\right): \lambda \leq \alpha\right\}$ and $\mathcal{P}:=\left\{P_{\beta}: \beta \leq \alpha\right\}$ to define Y_{α}. Let $\left\{N_{\zeta}: \zeta<\kappa\right\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality \mathfrak{c}. For any $\zeta<\kappa$ let $\{\zeta(\xi): \xi<\mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{\zeta}\left(x_{\alpha}\right)=y_{\zeta(\alpha)}^{\alpha}$. Let $\zeta_{1}<\zeta_{2}<\ldots<\zeta_{n}<\kappa, P_{\beta}$ be a polynomial in n variables, g_{γ} be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c}. There is $\xi<\mathfrak{c}$ such that $N_{\zeta_{1}}, N_{\zeta_{2}}, \ldots, N_{\zeta_{n}}$ are disjoint above ξ. Since Z is of cardinality \mathfrak{c}, there is $\alpha<\mathfrak{c}$ with $\alpha>\max \{\beta, \gamma, \xi\}$ and $x_{\alpha} \in Z$. Since α is greater than ξ, then $f_{\zeta_{1}}\left(x_{\alpha}\right), f_{\zeta_{2}}\left(x_{\alpha}\right), \ldots, f_{\zeta_{n}}\left(x_{\alpha}\right)$ are distinct points of Y_{α}. Since α is greater than β and γ, by construction $P_{\beta}\left(f_{\zeta_{1}}, f_{\zeta_{2}}, \ldots, f_{\zeta_{n}}\right)$ differs from g_{γ} at the point $x_{\alpha} \in Z$. Therefore $P_{\beta}\left(f_{\zeta_{1}}, f_{\zeta_{2}}, \ldots, f_{\zeta_{n}}\right)$ is a Sierpiński-Zygmund function.

corollary

If one of the following set-theoretical assumption holds

- Martin's Axiom, or
- CH or,
- $\mathfrak{c}^{+}=2^{\mathfrak{c}}$,
then the set of Sierpiński-Zygmund functions is $2^{\text {c }}$-algebrable.

questions

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain $2^{\text {c }}$-algebrability (or even $2^{\text {c }}$-lineability) of the set of Sierpiński-Zygmund functions?
2. Can one prove in ZFC that there is free subalgebra of $2^{\text {c }}$ generators in $\mathbb{R}^{\mathbb{R}}$?YES 3. Is it provable in ZFC that there is an almost disjoint family of subsets of c of cardinality 2^{c} ?

questions

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain $2^{\text {c }}$-algebrability (or even $2^{\text {c }}$-lineability) of the set of Sierpiński-Zygmund functions?
2. Can one prove in ZFC that there is free subalgebra of 2^{c} generators in $\mathbb{R}^{\mathbb{R}}$?
3. Is it provable in ZFC that there is an almost disjoint family of subsets of c of cardinality $2^{\text {c }}$?

questions

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain $2^{\text {c }}$-algebrability (or even 2^{c}-lineability) of the set of Sierpiński-Zygmund functions?
2. Can one prove in ZFC that there is free subalgebra of 2^{c} generators in $\mathbb{R}^{\mathbb{R}}$?YES.
3. Is it provable in ZFC that there is an almost disjoint family of subsets of c of cardinality $2^{\text {c }}$?

questions

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain $2^{\text {c }}$-algebrability (or even $2^{\text {c }}$-lineability) of the set of Sierpiński-Zygmund functions?
2. Can one prove in ZFC that there is free subalgebra of 2^{c} generators in $\mathbb{R}^{\mathbb{R}}$?YES.
3. Is it provable in ZFC that there is an almost disjoint family of subsets of \mathfrak{c} of cardinality 2^{c} ?

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof: Let

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^{n}$ such that $P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha}: \beta \omega \rightarrow n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}}: c \rightarrow \mathbb{R}$ defined by the formula

$$
f_{\mathcal{U}}(\alpha)=\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}) .
$$

We claim that the family $F=\left\{f_{\mathcal{U}}\right\} \mathcal{U} \in \beta \omega \subset \mathbb{R}^{\mathfrak{c}}$ is algebraically independent. We need to check that $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right) \neq 0$ for any non-zero polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right]$ and any
pairwise distinct ultrafilters $\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}$

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof: Let

$$
\mathcal{P}=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right] \times n^{\omega}=\left\{\left(P_{\alpha}, p_{\alpha}\right): \alpha<\mathfrak{c}\right\}
$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^{n}$ such that $P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha}: \beta \omega \rightarrow n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $\mathcal{F}_{\mathcal{U}}: \mathfrak{c} \rightarrow \mathbb{R}$ defined by the formula

$$
f_{\mathcal{U}}(\alpha)=\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}) .
$$

We claim that the family $F=\left\{f_{\mathcal{U}}\right\}_{\mathcal{U} \in \beta \omega} \subset \mathbb{R}^{\mathfrak{c}}$ is algebraically independent. We need to check that $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right) \neq 0$ for any non-zero polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right]$ and any
pairwise distinct ultrafilters \mathcal{U}_{1},

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof: Let

$$
\mathcal{P}=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right] \times n^{\omega}=\left\{\left(P_{\alpha}, p_{\alpha}\right): \alpha<\mathfrak{c}\right\} .
$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^{n}$ such that $P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0$.
admits a continuous extension $\bar{p}_{\alpha}: \beta \omega \rightarrow n$. Now to each ultrafilter
$\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}}: \mathfrak{c} \rightarrow \mathbb{R}$ defined by the formula

$$
F_{u}(\alpha)=\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}) .
$$

We claim that the family $F=\left\{f_{\mathcal{U}}\right\}_{\mathcal{U} \in \beta \omega} \subset \mathbb{R}^{\mathfrak{c}}$ is algebraically independent. We need to check that $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right) \neq 0$ for any non-zero polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right]$ and any
pairwise distinct ultrafilters \mathcal{U}_{1},

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof: Let

$$
\mathcal{P}=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right] \times n^{\omega}=\left\{\left(P_{\alpha}, p_{\alpha}\right): \alpha<\mathfrak{c}\right\}
$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^{n}$ such that $P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha}: \beta \omega \rightarrow n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}}: c \rightarrow \mathbb{R}$ defined by the formula

$$
f_{\mathcal{U}}(\alpha)=\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}) .
$$

We claim that the family $F=\left\{f_{\mathcal{U}}\right\}_{\mathcal{U} \in \beta \omega} \subset \mathbb{R}^{\mathfrak{c}}$ is algebraically independent. We need to check that $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right) \neq 0$ for any non-zero polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right]$ and any pairwise distinct ultrafilters \mathcal{U}_{1},

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof: Let

$$
\mathcal{P}=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right] \times n^{\omega}=\left\{\left(P_{\alpha}, p_{\alpha}\right): \alpha<\mathfrak{c}\right\}
$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^{n}$ such that $P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha}: \beta \omega \rightarrow n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}}: \mathfrak{c} \rightarrow \mathbb{R}$ defined by the formula

$$
f_{\mathcal{U}}(\alpha)=\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}) .
$$

We claim that the family $F=\left\{f_{\mathcal{U}}\right\} \mathcal{U} \in \beta \omega \subset \mathbb{R}^{\mathrm{c}}$ is algebraically independent. We need to check that $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right) \neq 0$ for any non-zero polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right]$ and any

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof: Let

$$
\mathcal{P}=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right] \times n^{\omega}=\left\{\left(P_{\alpha}, p_{\alpha}\right): \alpha<\mathfrak{c}\right\}
$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^{n}$ such that $P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha}: \beta \omega \rightarrow n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}}: \mathfrak{c} \rightarrow \mathbb{R}$ defined by the formula

$$
f_{\mathcal{U}}(\alpha)=\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}) .
$$

We claim that the family $F=\left\{f_{\mathcal{U}}\right\}_{\mathcal{U} \in \beta \omega} \subset \mathbb{R}^{\mathfrak{c}}$ is algebraically independent.
non-zero polynomial $P\left(x_{1}\right.$
pairwise distinct ultrafilters \mathcal{U}_{1},

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof: Let

$$
\mathcal{P}=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right] \times n^{\omega}=\left\{\left(P_{\alpha}, p_{\alpha}\right): \alpha<\mathfrak{c}\right\}
$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^{n}$ such that $P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha}: \beta \omega \rightarrow n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}}: \mathfrak{c} \rightarrow \mathbb{R}$ defined by the formula

$$
f_{\mathcal{U}}(\alpha)=\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}) .
$$

We claim that the family $F=\left\{f_{\mathcal{U}}\right\}_{\mathcal{U} \in \beta \omega} \subset \mathbb{R}^{\mathfrak{c}}$ is algebraically independent. We need to check that $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right) \neq 0$ for any non-zero polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{*}\left[x_{1}, \ldots, x_{n}\right]$ and any pairwise distinct ultrafilters $\mathcal{U}_{1}, \ldots, \mathcal{U}_{n} \in \beta \omega$.

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^{c} generators.
Proof continued: Find a partition $\omega=U_{1} \cup \cdots \cup U_{n}$ such that $U_{i} \in \mathcal{U}_{j}$ if and only if $i=j$. This partition determines $p: \omega \rightarrow n$ such that $p^{-1}(i)=U_{i}$ for every $i \in n$. Then its extension $\bar{p}: \beta \omega \rightarrow n$ has the property $\bar{p}\left(\mathcal{U}_{i}\right)=i$ for every $i \in n$. The function $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right): 2^{\omega} \rightarrow \mathbb{R}$ is not equal to zero at the ordinal α as

$$
\begin{aligned}
P\left(f \tilde{u}_{1}, \ldots, f_{u_{n}}\right)(\alpha) & =P_{\alpha}\left(f_{u_{1}}(\alpha), \ldots, F_{u_{n}}(\alpha)\right)= \\
& =P_{\alpha}\left(\vec{x}_{\alpha} \circ \bar{p}_{\alpha}\left(\mathcal{U}_{1}\right), \ldots, \vec{x}_{\alpha} \circ \bar{p}_{\alpha}\left(u_{n}\right)\right)= \\
& =P_{\alpha}\left(\vec{x}_{\alpha}(1), \ldots, \vec{x}_{\alpha}(n)\right)=P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0
\end{aligned}
$$

by the choice of the vector $\vec{\chi}_{\alpha}$.

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.
Proof continued: Find a partition $\omega=U_{1} \cup \cdots \cup U_{n}$ such that $U_{i} \in \mathcal{U}_{j}$ if and only if $i=j$. This partition determines p such that $p^{-1}(i)=U_{i}$ for every $i \in n$. Then its extension $\bar{p}: \beta \omega \rightarrow n$ has the property $\bar{p}\left(\mathcal{U}_{i}\right)=i$ for every $i \in n$. The function $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right): 2^{\omega} \rightarrow \mathbb{R}$ is not equal to zero at the ordinal α as

$$
\begin{aligned}
P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right)(\alpha) & =P_{\alpha}\left(f_{\mathcal{U}_{1}}(\alpha), \ldots, f_{\mathcal{U}_{n}}(\alpha)\right)= \\
& =P_{\alpha}\left(\vec{x}_{\alpha} \circ \bar{p}_{\alpha}\left(\mathcal{U}_{1}\right), \ldots, \vec{x}_{\alpha} \circ \bar{p}_{\alpha}\left(\mathcal{U}_{n}\right)\right)= \\
& =P_{\alpha}\left(\vec{x}_{\alpha}(1), \ldots, \vec{x}_{\alpha}(n)\right)=P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0
\end{aligned}
$$

by the choice of the vector \vec{x}_{α}

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.
Proof continued: Find a partition $\omega=U_{1} \cup \cdots \cup U_{n}$ such that $U_{i} \in \mathcal{U}_{j}$ if and only if $i=j$. This partition determines $p: \omega \rightarrow n$ such that $p^{-1}(i)=U_{i}$ for every $i \in n$. Then its extension $\bar{p}: \beta \omega \rightarrow n$ has the property $\bar{p}\left(\mathcal{U}_{i}\right)=i$ for every $i \in n$. The function

by the choice of the vector \vec{x}_{α}

theorem

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.
Proof continued: Find a partition $\omega=U_{1} \cup \cdots \cup U_{n}$ such that $U_{i} \in \mathcal{U}_{j}$ if and only if $i=j$. This partition determines $p: \omega \rightarrow n$ such that $p^{-1}(i)=U_{i}$ for every $i \in n$. Then its extension $\bar{p}: \beta \omega \rightarrow n$ has the property $\bar{p}\left(\mathcal{U}_{i}\right)=i$ for every $i \in n$. The function $P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right): 2^{\omega} \rightarrow \mathbb{R}$ is not equal to zero at the ordinal α as

$$
\begin{aligned}
P\left(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}\right)(\alpha) & =P_{\alpha}\left(f_{\mathcal{U}_{1}}(\alpha), \ldots, f_{\mathcal{U}_{n}}(\alpha)\right)= \\
& =P_{\alpha}\left(\vec{x}_{\alpha} \circ \bar{p}_{\alpha}\left(\mathcal{U}_{1}\right), \ldots, \vec{x}_{\alpha} \circ \bar{p}_{\alpha}\left(\mathcal{U}_{n}\right)\right)= \\
& =P_{\alpha}\left(\vec{x}_{\alpha}(1), \ldots, \vec{x}_{\alpha}(n)\right)=P_{\alpha}\left(\vec{x}_{\alpha}\right) \neq 0
\end{aligned}
$$

by the choice of the vector $\vec{\chi}_{\alpha}$.

Using a this method we obtain

theorem

$\mathcal{P E S}(\mathbb{C})$ is strongly $2^{\mathfrak{c}}$ algebrable.
theorem
$\mathcal{S E S}(\mathbb{C}) \backslash \mathcal{P E S}(\mathbb{C})$ is strongly 2^{c} algebrable.
theorem
Family of all non-measurable functions is strongly 2^{c} algebrable

Using a this method we obtain
theorem
$\mathcal{P E S}(\mathbb{C})$ is strongly 2^{c} algebrable.

theorem

$\mathcal{S E S}(\mathbb{C}) \backslash \mathcal{P E S}(\mathbb{C})$ is strongly $2^{\mathfrak{c}}$ algebrable.

theorem

Family of all non-measurable functions is strongly $2^{\text {c }}$ algebrable

Using a this method we obtain

theorem

$\mathcal{P E S}(\mathbb{C})$ is strongly $2^{\mathfrak{c}}$ algebrable.

theorem

$\mathcal{S E S}(\mathbb{C}) \backslash \mathcal{P E S}(\mathbb{C})$ is strongly $2^{\mathfrak{c}}$ algebrable.

theorem

Family of all non-measurable functions is strongly $2^{\mathfrak{c}}$ algebrable.

