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Sierpínski-Zygmund functions

Strong algebrability of series and sequences

Szymon G÷¾ab

with Artur Bartoszewicz (Technical University of Lodz)

Szymon G÷¾ab Strong algebrability of series and sequences



Introduction
Examples
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Introduction

algebrability

Assume that B is a linear algebra, that is, a linear space being also
an algebra. E is ��algebrable if E [ f0g contains a �-generated
algebra, i.e.
P(x1; :::; xn) 2 E or P(x1; :::; xn) = 0 for distinct generators
x1; :::; xn and any polynomials P.
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free linear algebras

A is a �-generated free algebra, if there exists a subset
X = fx� : � < �g of A such that any function f from X to some
algebra A0, can be uniquely extended to a homomorphism from A
into A0. A subset X = fx� : � < �g of a commutative algebra B
generates a free sub-algebra A if and only if for each polynomial P
and any x�1 ; x�2 ; :::; x�n we have P(x�1 ; x�2 ; :::; x�n ) = 0 if and only
if P = 0.

strong algebrability

A subset E of a commutative linear algebra B is strongly
��algebrable, if there exists a �-generated free algebra A contained
in E [ f0g.
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Proposition

The set c00 is !�algebrable in c0 but is not strongly 1�algebrable.

Theorem

The set c0 n
S
flp : p � 1g is densely strongly c�algebrable in c0.

Theorem
The set of all sequences in l1 which set of limits points is
homeomorphic to the Cantor set is comeager and strongly
c-algebrable.
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A function f : R! R such that, for any set Z � R of cardinality
the continuum, the restriction f jZ is not a Borel map is called
Sierpínski-Zygmund function.

with D. Pellegrino and J. B. Seoane-Sepúlveda

The set of Sierpínski-Zygmund functions is strongly �-algebrable,
provided there exists a family of � almost disjoint subsets of c.

lemma
Let P be a family of non-zero real polynomials with no constant
term and let X be a subset of R both of cardinality less than c.
Then there exists set Y = fy� : � < cg such that
P(y�1 ; y�2 ; : : : ; y�n ) =2 X for any n, any polynomial P 2 P and any
distinct ordinals �i < c.

Szymon G÷¾ab Strong algebrability of series and sequences



Introduction
Examples
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Proof. Enumerate Borel functions fg� : � < cg and
R = fx� : � < cg. Let fP� : � < cg denote non-zero polynomials
without constant term. At the stage � we use Lemma for
X := fg�(x�) : � � �g and P := fP� : � � �g to de�ne Y�. Let
fN� : � < �g be a set of almost disjoint subsets of c each of
cardinality c. For any � < � let f�(�) : � < cg be an increasing
enumeration of N� and de�ne f� : R! R by f�(x�) = y��(�). Let
�1 < �2 < : : : < �n < �, P� be a polynomial in n variables, g be
a Borel function and Z be any subset of R of cardinality c. There
is � < c such that N�1 ;N�2 ; : : : ;N�n are disjoint above �. Since Z
is of cardinality c, there is � < c with � > maxf�; ; �g and
x� 2 Z . Since � is greater than �, then f�1(x�); f�2(x�); : : : ; f�n (x�)
are distinct points of Y�. Since � is greater than � and , by
construction P�(f�1 ; f�2 ; : : : ; f�n ) di¤ers from g at the point
x� 2 Z . Therefore P�(f�1 ; f�2 ; : : : ; f�n ) is a Sierpínski-Zygmund
function.
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corollary

If one of the following set-theoretical assumption holds

Martin�s Axiom, or

CH or,

c+ = 2c,

then the set of Sierpínski-Zygmund functions is 2c-algebrable.
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questions

1. Is it necessary to add any additional hypothesis to ZFC in order
to obtain 2c-algebrability (or even 2c-lineability) of the set of
Sierpínski-Zygmund functions?
2. Can one prove in ZFC that there is free subalgebra of 2c

generators in RR?YES.
3. Is it provable in ZFC that there is an almost disjoint family of
subsets of c of cardinality 2c?
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theorem

RR contains a free linear algebra of 2c generators.

Proof: Let

P =
[
n2N

R�[x1; : : : ; xn]� n! = f(P�; p�) : � < cg:

For � choose a vector ~x� 2 Rn such that P�(~x�) 6= 0. p� 2 n!
admits a continuous extension �p� : �! ! n.Now to each ultra�lter
U 2 �! assign the function fU : c! R de�ned by the formula

fU (�) = ~x� � �p�(U):

We claim that the family F = ffUgU2�! � Rc is algebraically
independent.We need to check that P(fU1 ; : : : ; fUn ) 6= 0 for any
non-zero polynomial P(x1; : : : ; xn) 2 R�[x1; : : : ; xn] and any
pairwise distinct ultra�lters U1; : : : ;Un 2 �!.
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non-zero polynomial P(x1; : : : ; xn) 2 R�[x1; : : : ; xn] and any
pairwise distinct ultra�lters U1; : : : ;Un 2 �!.
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Ui 2 Uj if and only if i = j .This partition determines p : ! ! n
such that p�1(i) = Ui for every i 2 n. Then its extension
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Using a this method we obtain

theorem

PES(C) is strongly 2c algebrable.

theorem

SES(C) n PES(C) is strongly 2c algebrable.

theorem

Family of all non-measurable functions is strongly 2c algebrable.
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