Strong algebrability of series and sequences

Szymon Głąb

with Artur Bartoszewicz (Technical University of Lodz)

- A 3 N

algebrability

Assume that *B* is a linear algebra, that is, a linear space being also an algebra. *E* is κ -algebrable if $E \cup \{0\}$ contains a κ -generated algebra, i.e. $P(x_1, ..., x_n) \in E$ or $P(x_1, ..., x_n) = 0$ for distinct generators $x_1, ..., x_n$ and any polynomials *P*.

algebrability

Assume that *B* is a linear algebra, that is, a linear space being also an algebra. *E* is κ -algebrable if $E \cup \{0\}$ contains a κ -generated algebra, i.e. $P(x_1, ..., x_n) \in E$ or $P(x_1, ..., x_n) = 0$ for distinct generators $x_1, ..., x_n$ and any polynomials *P*.

algebrability

Assume that B is a linear algebra, that is, a linear space being also an algebra. E is κ -algebrable if $E \cup \{0\}$ contains a κ -generated algebra, i.e. $P(x_1, ..., x_n) \in E$ or $P(x_1, ..., x_n) = 0$ for distinct generators $x_1, ..., x_n$ and any polynomials P.

algebrability

Assume that *B* is a linear algebra, that is, a linear space being also an algebra. *E* is κ -algebrable if $E \cup \{0\}$ contains a κ -generated algebra, i.e. $P(x_1, ..., x_n) \in E$ or $P(x_1, ..., x_n) = 0$ for distinct generators $x_1, ..., x_n$ and any polynomials *P*.

伺 ト イ ヨ ト イ ヨ ト

free linear algebras

A is a κ -generated free algebra, if there exists a subset $X = \{x_{\alpha} : \alpha < \kappa\}$ of A such that any function f from X to some algebra A', can be uniquely extended to a homomorphism from A into A'. A subset $X = \{x_{\alpha} : \alpha < \kappa\}$ of a commutative algebra B generates a free sub-algebra A if and only if for each polynomial P and any $x_{\alpha_1}, x_{\alpha_2}, ..., x_{\alpha_n}$ we have $P(x_{\alpha_1}, x_{\alpha_2}, ..., x_{\alpha_n}) = 0$ if and only if P = 0.

strong algebrability

A subset *E* of a commutative linear algebra *B* is *strongly* κ -algebrable, if there exists a κ -generated free algebra *A* contained in $E \cup \{0\}$.

(日) (同) (三) (三)

free linear algebras

A is a κ -generated free algebra, if there exists a subset $X = \{x_{\alpha} : \alpha < \kappa\}$ of A such that any function f from X to some algebra A', can be uniquely extended to a homomorphism from A into A'. A subset $X = \{x_{\alpha} : \alpha < \kappa\}$ of a commutative algebra B generates a free sub-algebra A if and only if for each polynomial P and any $x_{\alpha_1}, x_{\alpha_2}, ..., x_{\alpha_n}$ we have $P(x_{\alpha_1}, x_{\alpha_2}, ..., x_{\alpha_n}) = 0$ if and only if P = 0.

strong algebrability

A subset *E* of a commutative linear algebra *B* is *strongly* κ -algebrable, if there exists a κ -generated free algebra *A* contained in $E \cup \{0\}$.

<ロト <部 > < 注 > < 注 >

free linear algebras

A is a κ -generated free algebra, if there exists a subset $X = \{x_{\alpha} : \alpha < \kappa\}$ of A such that any function f from X to some algebra A', can be uniquely extended to a homomorphism from A into A'. A subset $X = \{x_{\alpha} : \alpha < \kappa\}$ of a commutative algebra B generates a free sub-algebra A if and only if for each polynomial P and any $x_{\alpha_1}, x_{\alpha_2}, ..., x_{\alpha_n}$ we have $P(x_{\alpha_1}, x_{\alpha_2}, ..., x_{\alpha_n}) = 0$ if and only if P = 0.

strong algebrability

A subset *E* of a commutative linear algebra *B* is *strongly* κ -algebrable, if there exists a κ -generated free algebra *A* contained in $E \cup \{0\}$.

・ロト ・同ト ・ヨト ・ヨト

Proposition

The set c_{00} is ω -algebrable in c_0 but is not strongly 1-algebrable.

Theorem

The set $c_0 \setminus \bigcup \{ l^p : p \ge 1 \}$ is densely strongly c-algebrable in c_0 .

Theorem

The set of all sequences in I^{∞} which set of limits points is homeomorphic to the Cantor set is comeager and strongly c-algebrable.

Proposition

The set c_{00} is ω -algebrable in c_0 but is not strongly 1-algebrable.

Theorem

The set $c_0 \setminus \bigcup \{ l^p : p \ge 1 \}$ is densely strongly c-algebrable in c_0 .

Theorem

The set of all sequences in I^{∞} which set of limits points is homeomorphic to the Cantor set is comeager and strongly c-algebrable.

(日) (同) (三) (三)

Proposition

The set c_{00} is ω -algebrable in c_0 but is not strongly 1-algebrable.

Theorem

The set $c_0 \setminus \bigcup \{ l^p : p \ge 1 \}$ is densely strongly c-algebrable in c_0 .

Theorem

The set of all sequences in I^{∞} which set of limits points is homeomorphic to the Cantor set is comeager and strongly c-algebrable.

- 4 同 6 4 日 6 4 日 6

A function $f : \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $f|_Z$ is not a Borel map is called Sierpiński-Zygmund function.

with D. Pellegrino and J. B. Seoane-Sepúlveda

The set of Sierpiński-Zygmund functions is strongly κ -algebrable, provided there exists a family of κ almost disjoint subsets of c.

emma

Let \mathcal{P} be a family of non-zero real polynomials with no constant term and let X be a subset of \mathbb{R} both of cardinality less than \mathfrak{c} . Then there exists set $Y = \{y_{\xi} : \xi < \mathfrak{c}\}$ such that $P(y_{\xi_1}, y_{\xi_2}, \dots, y_{\xi_n}) \notin X$ for any n, any polynomial $P \in \mathcal{P}$ and any distinct ordinals $\xi_i < \mathfrak{c}$.

A function $f : \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $f|_Z$ is not a Borel map is called Sierpiński-Zygmund function.

with D. Pellegrino and J. B. Seoane-Sepúlveda

The set of Sierpiński-Zygmund functions is strongly κ -algebrable, provided there exists a family of κ almost disjoint subsets of c.

emma

Let \mathcal{P} be a family of non-zero real polynomials with no constant term and let X be a subset of \mathbb{R} both of cardinality less than c. Then there exists set $Y = \{y_{\xi} : \xi < c\}$ such that $P(y_{\xi_1}, y_{\xi_2}, \dots, y_{\xi_n}) \notin X$ for any n, any polynomial $P \in \mathcal{P}$ and any distinct ordinals $\xi_i < c$.

A function $f : \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $f|_Z$ is not a Borel map is called Sierpiński-Zygmund function.

with D. Pellegrino and J. B. Seoane-Sepúlveda

The set of Sierpiński-Zygmund functions is strongly κ -algebrable, provided there exists a family of κ almost disjoint subsets of c.

lemma

Let \mathcal{P} be a family of non-zero real polynomials with no constant term and let X be a subset of \mathbb{R} both of cardinality less than c. Then there exists set $Y = \{y_{\xi} : \xi < \mathfrak{c}\}$ such that $P(y_{\xi_1}, y_{\xi_2}, \ldots, y_{\xi_n}) \notin X$ for any *n*, any polynomial $P \in \mathcal{P}$ and any distinct ordinals $\xi_i < \mathfrak{c}$.

| 4 同 🕨 🖌 🖉 🖻 🖌 🖉

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let $\{N_{\mathcal{C}}: \zeta < \kappa\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c. For any $\zeta < \kappa$ let $\{\zeta(\xi) : \xi < c\}$ be an increasing

イロト イポト イラト イラト

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let $\{N_{\mathcal{C}}: \zeta < \kappa\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c. For any $\zeta < \kappa$ let $\{\zeta(\xi) : \xi < \mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta} : \mathbb{R} \to \mathbb{R}$ by $f_{\zeta}(x_{\alpha}) = y^{\alpha}_{\zeta(\alpha)}$. Let

(日) (同) (目) (日)

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let $\{N_{\mathcal{C}}: \zeta < \kappa\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c. For any $\zeta < \kappa$ let $\{\zeta(\xi) : \xi < \mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta} : \mathbb{R} \to \mathbb{R}$ by $f_{\zeta}(x_{\alpha}) = y^{\alpha}_{\zeta(\alpha)}$. Let $\zeta_1 < \zeta_2 < \ldots < \zeta_n < \kappa$, P_β be a polynomial in *n* variables, g_γ be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c} . There

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let $\{N_{\mathcal{C}}: \zeta < \kappa\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c. For any $\zeta < \kappa$ let $\{\zeta(\xi) : \xi < \mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta} : \mathbb{R} \to \mathbb{R}$ by $f_{\zeta}(x_{\alpha}) = y^{\alpha}_{\zeta(\alpha)}$. Let $\zeta_1 < \zeta_2 < \ldots < \zeta_n < \kappa$, P_β be a polynomial in *n* variables, g_γ be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c} . There is $\xi < \mathfrak{c}$ such that $N_{\zeta_1}, N_{\zeta_2}, \ldots, N_{\zeta_n}$ are disjoint above ξ . Since Z

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let $\{N_{\mathcal{C}}: \zeta < \kappa\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c. For any $\zeta < \kappa$ let $\{\zeta(\xi) : \xi < \mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta} : \mathbb{R} \to \mathbb{R}$ by $f_{\zeta}(x_{\alpha}) = y^{\alpha}_{\zeta(\alpha)}$. Let $\zeta_1 < \zeta_2 < \ldots < \zeta_n < \kappa$, P_β be a polynomial in *n* variables, g_γ be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c} . There is $\xi < \mathfrak{c}$ such that $N_{\zeta_1}, N_{\zeta_2}, \ldots, N_{\zeta_n}$ are disjoint above ξ . Since Z is of cardinality \mathfrak{c} , there is $\alpha < \mathfrak{c}$ with $\alpha > \max\{\beta, \gamma, \xi\}$ and $x_{\alpha} \in \mathbb{Z}$. Since α is greater than ξ , then $f_{\zeta_1}(x_{\alpha}), f_{\zeta_2}(x_{\alpha}), \ldots, f_{\zeta_n}(x_{\alpha})$

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let $\{N_{\mathcal{C}}: \zeta < \kappa\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c. For any $\zeta < \kappa$ let $\{\zeta(\xi) : \xi < \mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta} : \mathbb{R} \to \mathbb{R}$ by $f_{\zeta}(x_{\alpha}) = y^{\alpha}_{\ell(\alpha)}$. Let $\zeta_1 < \zeta_2 < \ldots < \zeta_n < \kappa$, P_β be a polynomial in *n* variables, g_γ be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c} . There is $\xi < \mathfrak{c}$ such that $N_{\zeta_1}, N_{\zeta_2}, \ldots, N_{\zeta_n}$ are disjoint above ξ . Since Z is of cardinality \mathfrak{c} , there is $\alpha < \mathfrak{c}$ with $\alpha > \max\{\beta, \gamma, \xi\}$ and $x_{\alpha} \in Z$. Since α is greater than ξ , then $f_{\zeta_1}(x_{\alpha}), f_{\zeta_2}(x_{\alpha}), \ldots, f_{\zeta_n}(x_{\alpha})$ are distinct points of Y_{α} . Since α is greater than β and γ , by

Proof. Enumerate Borel functions $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ and $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\{P_{\alpha} : \alpha < \mathfrak{c}\}$ denote non-zero polynomials without constant term. At the stage α we use Lemma for $X := \{g_{\lambda}(x_{\alpha}) : \lambda \leq \alpha\}$ and $\mathcal{P} := \{P_{\beta} : \beta \leq \alpha\}$ to define Y_{α} . Let $\{N_{\mathcal{C}}: \zeta < \kappa\}$ be a set of almost disjoint subsets of \mathfrak{c} each of cardinality c. For any $\zeta < \kappa$ let $\{\zeta(\xi) : \xi < \mathfrak{c}\}$ be an increasing enumeration of N_{ζ} and define $f_{\zeta} : \mathbb{R} \to \mathbb{R}$ by $f_{\zeta}(x_{\alpha}) = y^{\alpha}_{\zeta(\alpha)}$. Let $\zeta_1 < \zeta_2 < \ldots < \zeta_n < \kappa, P_\beta$ be a polynomial in *n* variables, g_γ be a Borel function and Z be any subset of \mathbb{R} of cardinality \mathfrak{c} . There is $\xi < \mathfrak{c}$ such that $N_{\zeta_1}, N_{\zeta_2}, \ldots, N_{\zeta_n}$ are disjoint above ξ . Since Z is of cardinality \mathfrak{c} , there is $\alpha < \mathfrak{c}$ with $\alpha > \max\{\beta, \gamma, \xi\}$ and $x_{\alpha} \in Z$. Since α is greater than ξ , then $f_{\zeta_1}(x_{\alpha}), f_{\zeta_2}(x_{\alpha}), \ldots, f_{\zeta_n}(x_{\alpha})$ are distinct points of Y_{α} . Since α is greater than β and γ , by construction $P_{\beta}(f_{\zeta_1}, f_{\zeta_2}, \dots, f_{\zeta_n})$ differs from g_{γ} at the point $x_{\alpha} \in Z$. Therefore $P_{\beta}(f_{\zeta_1}, f_{\zeta_2}, \dots, f_{\zeta_n})$ is a Sierpiński-Zygmund function.

- 4 同 6 4 日 6 4 日 6

corollary

If one of the following set-theoretical assumption holds

- Martin's Axiom, or
- CH or,
- $\mathfrak{c}^+ = 2^{\mathfrak{c}}$,

then the set of Sierpiński-Zygmund functions is 2^c-algebrable.

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain 2^c-algebrability (or even 2^c-lineability) of the set of Sierpiński-Zygmund functions?

2. Can one prove in ZFC that there is free subalgebra of 2^c generators in $\mathbb{R}^{\mathbb{R}}$?YES.

3. Is it provable in ZFC that there is an almost disjoint family of subsets of $\mathfrak c$ of cardinality $2^{\mathfrak c}?$

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain 2^{c} -algebrability (or even 2^{c} -lineability) of the set of Sierpiński-Zygmund functions?

2. Can one prove in ZFC that there is free subalgebra of 2° generators in $\mathbb{R}^{\mathbb{R}}$?YES.

3. Is it provable in ZFC that there is an almost disjoint family of subsets of c of cardinality 2°?

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain 2^{c} -algebrability (or even 2^{c} -lineability) of the set of Sierpiński-Zygmund functions?

2. Can one prove in ZFC that there is free subalgebra of $2^{\mathfrak{c}}$ generators in $\mathbb{R}^{\mathbb{R}}?YES.$

3. Is it provable in ZFC that there is an almost disjoint family of subsets of c of cardinality 2°?

1. Is it necessary to add any additional hypothesis to ZFC in order to obtain 2^{c} -algebrability (or even 2^{c} -lineability) of the set of Sierpiński-Zygmund functions?

2. Can one prove in ZFC that there is free subalgebra of 2^c generators in $\mathbb{R}^{\mathbb{R}}$?YES.

3. Is it provable in ZFC that there is an almost disjoint family of subsets of $\mathfrak c$ of cardinality $2^{\mathfrak c}?$

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.

Proof: Let

$$\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathbb{R}_*[x_1, \ldots, x_n] \times n^{\omega} = \{(P_{\alpha}, p_{\alpha}) : \alpha < \mathfrak{c}\}.$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^n$ such that $P_{\alpha}(\vec{x}_{\alpha}) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha} : \beta \omega \to n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}} : \mathfrak{c} \to \mathbb{R}$ defined by the formula

$$f_{\mathcal{U}}(\alpha) = \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}).$$

We claim that the family $F = \{f_{\mathcal{U}}\}_{\mathcal{U}\in\beta\omega} \subset \mathbb{R}^{c}$ is algebraically independent.We need to check that $P(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}) \neq 0$ for any non-zero polynomial $P(x_{1}, \ldots, x_{n}) \in \mathbb{R}_{*}[x_{1}, \ldots, x_{n}]$ and any pairwise distinct ultrafilters $\mathcal{U}_{1}, \ldots, \mathcal{U}_{n} \in \beta\omega_{\cdot, \mathbf{u}}$, \mathbf{e}_{p} , \mathbf{e}_{p

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.

Proof: Let

$$\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathbb{R}_*[x_1, \ldots, x_n] \times n^{\omega} = \{ (\mathcal{P}_{\alpha}, \mathcal{p}_{\alpha}) : \alpha < \mathfrak{c} \}.$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^n$ such that $P_{\alpha}(\vec{x}_{\alpha}) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha} : \beta \omega \to n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}} : \mathfrak{c} \to \mathbb{R}$ defined by the formula

$$f_{\mathcal{U}}(\alpha) = \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}).$$

We claim that the family $F = \{f_{\mathcal{U}}\}_{\mathcal{U}\in\beta\omega} \subset \mathbb{R}^{c}$ is algebraically independent.We need to check that $P(f_{\mathcal{U}_{1}}, \ldots, f_{\mathcal{U}_{n}}) \neq 0$ for any non-zero polynomial $P(x_{1}, \ldots, x_{n}) \in \mathbb{R}_{*}[x_{1}, \ldots, x_{n}]$ and any pairwise distinct ultrafilters $\mathcal{U}_{1}, \ldots, \mathcal{U}_{n} \in \beta\omega_{\mathbb{C}}$

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^c generators.

Proof: Let

$$\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathbb{R}_*[x_1, \ldots, x_n] \times n^{\omega} = \{(\mathcal{P}_{\alpha}, \mathcal{p}_{\alpha}) : \alpha < \mathfrak{c}\}.$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^n$ such that $P_{\alpha}(\vec{x}_{\alpha}) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha} : \beta \omega \to n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}} : c \to \mathbb{R}$ defined by the formula

$$f_{\mathcal{U}}(\alpha) = \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}).$$

We claim that the family $F = \{f_{\mathcal{U}}\}_{\mathcal{U}\in\beta\omega} \subset \mathbb{R}^c$ is algebraically independent.We need to check that $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) \neq 0$ for any non-zero polynomial $P(x_1, \ldots, x_n) \in \mathbb{R}_*[x_1, \ldots, x_n]$ and any pairwise distinct ultrafilters $\mathcal{U}_1, \ldots, \mathcal{U}_n \in \beta\omega_{\mathcal{U}_1} \to \mathcal{U}_2$

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^c generators.

Proof: Let

$$\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathbb{R}_*[x_1, \ldots, x_n] \times n^{\omega} = \{(\mathcal{P}_{\alpha}, \mathcal{p}_{\alpha}) : \alpha < \mathfrak{c}\}.$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^n$ such that $P_{\alpha}(\vec{x}_{\alpha}) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha} : \beta \omega \to n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}} : c \to \mathbb{R}$ defined by the formula

$$f_{\mathcal{U}}(\alpha) = \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}).$$

We claim that the family $F = \{f_{\mathcal{U}}\}_{\mathcal{U}\in\beta\omega} \subset \mathbb{R}^c$ is algebraically independent.We need to check that $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) \neq 0$ for any non-zero polynomial $P(x_1, \ldots, x_n) \in \mathbb{R}_*[x_1, \ldots, x_n]$ and any pairwise distinct ultrafilters $\mathcal{U}_1, \ldots, \mathcal{U}_n \in \beta\omega_{\mathcal{U}_1} \to \mathcal{U}_2$

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^c generators.

Proof: Let

$$\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathbb{R}_*[x_1, \ldots, x_n] \times n^{\omega} = \{(\mathcal{P}_{\alpha}, \mathcal{p}_{\alpha}) : \alpha < \mathfrak{c}\}.$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^n$ such that $P_{\alpha}(\vec{x}_{\alpha}) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha} : \beta \omega \to n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}} : \mathfrak{c} \to \mathbb{R}$ defined by the formula

$$f_{\mathcal{U}}(\alpha) = \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}).$$

We claim that the family $F = \{f_{\mathcal{U}}\}_{\mathcal{U}\in\beta\omega} \subset \mathbb{R}^{\mathfrak{c}}$ is algebraically independent. We need to check that $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) \neq 0$ for any non-zero polynomial $P(x_1, \ldots, x_n) \in \mathbb{R}_*[x_1, \ldots, x_n]$ and any pairwise distinct ultrafilters $\mathcal{U}_1, \ldots, \mathcal{U}_n \in \beta\omega$.

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^c generators.

Proof: Let

$$\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathbb{R}_*[x_1, \ldots, x_n] \times n^{\omega} = \{(\mathcal{P}_{\alpha}, \mathcal{p}_{\alpha}) : \alpha < \mathfrak{c}\}.$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^n$ such that $P_{\alpha}(\vec{x}_{\alpha}) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha} : \beta \omega \to n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}} : \mathfrak{c} \to \mathbb{R}$ defined by the formula

$$f_{\mathcal{U}}(\alpha) = \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}).$$

We claim that the family $F = \{f_{\mathcal{U}}\}_{\mathcal{U}\in\beta\omega} \subset \mathbb{R}^c$ is algebraically independent. We need to check that $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) \neq 0$ for any non-zero polynomial $P(x_1, \ldots, x_n) \in \mathbb{R}_*[x_1, \ldots, x_n]$ and any pairwise distinct ultrafilters $\mathcal{U}_1, \ldots, \mathcal{U}_n \in \beta\omega_{\cdot, \Box}$, \mathcal{O}

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.

Proof: Let

$$\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathbb{R}_*[x_1, \ldots, x_n] \times n^{\omega} = \{(\mathcal{P}_{\alpha}, \mathcal{p}_{\alpha}) : \alpha < \mathfrak{c}\}.$$

For α choose a vector $\vec{x}_{\alpha} \in \mathbb{R}^n$ such that $P_{\alpha}(\vec{x}_{\alpha}) \neq 0$. $p_{\alpha} \in n^{\omega}$ admits a continuous extension $\bar{p}_{\alpha} : \beta \omega \to n$. Now to each ultrafilter $\mathcal{U} \in \beta \omega$ assign the function $f_{\mathcal{U}} : \mathfrak{c} \to \mathbb{R}$ defined by the formula

$$f_{\mathcal{U}}(\alpha) = \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}).$$

We claim that the family $F = \{f_{\mathcal{U}}\}_{\mathcal{U}\in\beta\omega} \subset \mathbb{R}^c$ is algebraically independent. We need to check that $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) \neq 0$ for any non-zero polynomial $P(x_1, \ldots, x_n) \in \mathbb{R}_*[x_1, \ldots, x_n]$ and any pairwise distinct ultrafilters $\mathcal{U}_1, \ldots, \mathcal{U}_n \in \beta\omega$.

$\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.

Proof continued: Find a partition $\omega = U_1 \cup \cdots \cup U_n$ such that $U_i \in \mathcal{U}_j$ if and only if i = j. This partition determines $p : \omega \to n$ such that $p^{-1}(i) = U_i$ for every $i \in n$. Then its extension $\bar{p} : \beta \omega \to n$ has the property $\bar{p}(\mathcal{U}_i) = i$ for every $i \in n$. The function $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) : 2^{\omega} \to \mathbb{R}$ is not equal to zero at the ordinal α as

$$P(f_{\mathcal{U}_1}, \dots, f_{\mathcal{U}_n})(\alpha) = P_{\alpha}(f_{\mathcal{U}_1}(\alpha), \dots, f_{\mathcal{U}_n}(\alpha)) =$$

= $P_{\alpha}(\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}_1), \dots, \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}_n)) =$
= $P_{\alpha}(\vec{x}_{\alpha}(1), \dots, \vec{x}_{\alpha}(n)) = P_{\alpha}(\vec{x}_{\alpha}) \neq 0$

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of 2^c generators.

Proof continued: Find a partition $\omega = U_1 \cup \cdots \cup U_n$ such that $U_i \in \mathcal{U}_j$ if and only if i = j. This partition determines $p : \omega \to n$ such that $p^{-1}(i) = U_i$ for every $i \in n$. Then its extension $\bar{p} : \beta \omega \to n$ has the property $\bar{p}(\mathcal{U}_i) = i$ for every $i \in n$. The function $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) : 2^{\omega} \to \mathbb{R}$ is not equal to zero at the ordinal α as

$$P(f_{\mathcal{U}_1}, \dots, f_{\mathcal{U}_n})(\alpha) = P_{\alpha}(f_{\mathcal{U}_1}(\alpha), \dots, f_{\mathcal{U}_n}(\alpha)) =$$

= $P_{\alpha}(\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}_1), \dots, \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}_n)) =$
= $P_{\alpha}(\vec{x}_{\alpha}(1), \dots, \vec{x}_{\alpha}(n)) = P_{\alpha}(\vec{x}_{\alpha}) \neq 0$

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.

Proof continued: Find a partition $\omega = U_1 \cup \cdots \cup U_n$ such that $U_i \in \mathcal{U}_j$ if and only if i = j. This partition determines $p : \omega \to n$ such that $p^{-1}(i) = U_i$ for every $i \in n$. Then its extension $\bar{p} : \beta \omega \to n$ has the property $\bar{p}(\mathcal{U}_i) = i$ for every $i \in n$. The function $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) : 2^{\omega} \to \mathbb{R}$ is not equal to zero at the ordinal α as

$$P(f_{\mathcal{U}_1}, \dots, f_{\mathcal{U}_n})(\alpha) = P_{\alpha}(f_{\mathcal{U}_1}(\alpha), \dots, f_{\mathcal{U}_n}(\alpha)) =$$

= $P_{\alpha}(\vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}_1), \dots, \vec{x}_{\alpha} \circ \bar{p}_{\alpha}(\mathcal{U}_n)) =$
= $P_{\alpha}(\vec{x}_{\alpha}(1), \dots, \vec{x}_{\alpha}(n)) = P_{\alpha}(\vec{x}_{\alpha}) \neq 0$

 $\mathbb{R}^{\mathbb{R}}$ contains a free linear algebra of $2^{\mathfrak{c}}$ generators.

Proof continued: Find a partition $\omega = U_1 \cup \cdots \cup U_n$ such that $U_i \in \mathcal{U}_j$ if and only if i = j. This partition determines $p : \omega \to n$ such that $p^{-1}(i) = U_i$ for every $i \in n$. Then its extension $\bar{p} : \beta \omega \to n$ has the property $\bar{p}(\mathcal{U}_i) = i$ for every $i \in n$. The function $P(f_{\mathcal{U}_1}, \ldots, f_{\mathcal{U}_n}) : 2^{\omega} \to \mathbb{R}$ is not equal to zero at the ordinal α as

$$\begin{aligned} P(f_{\mathcal{U}_1},\ldots,f_{\mathcal{U}_n})(\alpha) &= P_{\alpha}(f_{\mathcal{U}_1}(\alpha),\ldots,f_{\mathcal{U}_n}(\alpha)) = \\ &= P_{\alpha}(\vec{x}_{\alpha}\circ\bar{p}_{\alpha}(\mathcal{U}_1),\ldots,\vec{x}_{\alpha}\circ\bar{p}_{\alpha}(\mathcal{U}_n)) = \\ &= P_{\alpha}(\vec{x}_{\alpha}(1),\ldots,\vec{x}_{\alpha}(n)) = P_{\alpha}(\vec{x}_{\alpha}) \neq 0 \end{aligned}$$

Using a this method we obtain

theorem $\mathcal{PES}(\mathbb{C})$ is strongly 2^c algebrable.

theorem

 $SES(\mathbb{C}) \setminus PES(\mathbb{C})$ is strongly 2^c algebrable.

theorem

Family of all non-measurable functions is strongly 2^c algebrable.

- 4 同 6 4 日 6 4 日 6

Using a this method we obtain

theorem $\mathcal{PES}(\mathbb{C})$ is strongly 2^c algebrable.

theorem

 $\mathcal{SES}(\mathbb{C})\setminus\mathcal{PES}(\mathbb{C})$ is strongly 2^c algebrable.

theorem

Family of all non-measurable functions is strongly 2^c algebrable.

- 4 同 6 4 日 6 4 日 6

Using a this method we obtain

theorem $\mathcal{PES}(\mathbb{C})$ is strongly 2^c algebrable.

theorem

 $\mathcal{SES}(\mathbb{C})\setminus\mathcal{PES}(\mathbb{C})$ is strongly 2^c algebrable.

theorem

Family of all non-measurable functions is strongly 2^c algebrable.